

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

版本: V.2.00

日期:2008.07

http://www.epcio.com.tw

工業技術研究院 Industrial Technology Research Institute

目 錄

第一章	概論	2
第二章	人機界面使用說明	3
2.1	概述	3
2.2	說明	4
第三章	EPCIO 快速测試程式	14
3.1	系統基本安裝步驟	14
3.2	六軸同動脈波輸出控制測試	
3.3	手輪輸入快速測試	19
3.4	六軸同動電壓輸出閉迴路控制快速測試	21
3.5	LIO輸出入測試	25
3.6	RIO輸出入測試	
3.7	ADC輸入測試	
3.8	DAC輸出測試	
第四章	參數設定與功能說明	
4.1	主功能選項(請參考圖 4-1.1)	
4.2	SYSTEM PARAMETER功能選項	
4.3	DDA主功能選項	41
4.4	ENC主功能選項	45
4.5	PCL主功能選項	49
4.6	LIO功能選項	51
4.7	RIO0主功能選項	54
4.8	RIO1主功能選項	57
4.9	DAC主功能選項	60
4.10	ADC主功能選項	67

第一章 概論

工業技術研究院

Industrial Technology Research Institute

本手冊為 EPCIO 測試程式使用手冊,讀者可由此使用說明了解如何使用此 EPCIO 測試程式及參數值的設定,可以用來測試 EPCIO ASIC 所設計開發的 ISA-Bus/PCI-Bus 界面之控制板,包括 EPCIO-601/605、EPCIO-400/405 (ISA-Bus) 及 EPCIO-6000/6005、EPCIO-4000/4005 (PCI-Bus)之運動及輸出入控制模。

本測試程式可在 Win95/Win98/WinNT/Win2000/WinXP 作業平台下執行,執 行時請放置安裝光碟,執行安裝光碟動作目錄下執行 Driver Test Tool.exe (for ISA-Bus)檔案; Driver Test Tool.exe (for PCI-Bus),即可進入測試程式人機界面。

第二章 人機界面使用說明

2.1 概述

- 人機界面顯示畫面(如圖 2-1.1 所示)及說明如下所示:
- (1)主功能選擇區
- (2)設定選擇區
- (3)狀態顯示區
- (4)版本
- (5)中斷編號顯示區
- (6)基底位址
- (7)系統時脈
- (8)訊息欄
- (9)控制卡選擇區

2.2 說明

- (1)主功能選擇區
 包括開啟新檔(),開啟舊檔(),儲存檔案
 (),另存新檔(),原點復歸(),除比(),執行
 (Run...),停止(),離開(Quit)等主功能選項, 參數設定請參考第4章各節詳細說明。
 - (2)設定選擇區

包括 System Parameter, DDA, ENC, PCL, LIO, RIO 0, RIO 1, DAC, ADC 等功能選項,參數設定請參考第4章各節詳細說明。

(3)狀態顯示區(a)DDA 顯示區(如圖 2-2.1 所示)Target:命令總筆數

Target=Times × *Repeat*

Runnung:實際執行命令筆數 Stock:FIFO中的命令筆數 請參考 4.3 節 DDA 功能選項各節說明。

💣 EPCIO Test P	rogram for Muli	i Cards : Noname	.set			
			Save As	···· 🔿 🟠 👘	Ran 🗡	Quit
EPCIO-6000/6	6005 Card 💌	DDA ENC	PCL LIO	RIO Out.	RIO In. RIO INT. ADC	DAC
Card Index :	0 🔹		Target	Running	g Stock	
Setting_		DDA 0	100	0	0	
System Pa	rameter	DDA 1	100	0	0	
	•	DDA 2	100	0	0	
	<u> </u>	DDA 3	100	0	0	
<u> </u>	C	DDA 4	100	0	0	
PCI		DDA 5	100	0	0	
LIO						
RIO	0					
RIO	1					
DAC	c					
ADC	:					
Library Versio	on : 4.01				40 MHz	

圖 2-1.1

工業技術研究院 Industrial Technology Research Institute

(b)ENCODER 顯示區(如圖 2-2.2 所示)
Counter: ENCoder Counter 的讀回值
Latch: Latch 中斷次數
Comp.: Compare 中斷次數
請參考 4.4 節 ENCoder 主功能選項各節說明。

🧬 EPCIO Test Program for Multi Cards : Noname.set								
		Save As	=		Ran	×	Quit	
EPCIO-6000/6005 Card 💌	DDA ENC	PCL I	10 1	RIO Out.	. RIO In. RI	IO INT. ADC	DAC	
Card Index : 0 🔹		Index	Comp.	Count	er	Latch		
Setting	ENC 0	0	0	0		0		
System Parameter	ENC 1	0	0	0		0		
DDA	ENC 2	0	0	0		0		
	ENC 3	0	0	0		0		
ENC	ENC 4	0	0	0		0		
PCL	ENC 5	0	0	0		0		
LI0								
RIO 0								
RIO 1								
DAC								
ADC								
Library Varaian : 4.01					40.14	U		
LIUTARY VERSION : 4.01					40 M	nz		

圖 2-2.2

(c)PCL 顯示區(如圖 2-2.3 所示)
Error:為 Error Counter 的值
Interrupt Count:Over flow 中斷次數
請參考 4.5 PCL 主功能選項各節說明。

💣 EPCIO Test Program for Mult	i Cards : Noname	.set			
		Save As	🔂	Run 🗡	Quit
EPCIO-6000/6005 Card 💌	DDA ENC	PCL	.IO RIO Out.	RIO In. RIO INT. ADO	DAC
Card Index : 0 🔹		Error	Interru	upt Count	
Setting	PCL 0	0	0		
System Parameter	PCL 1	0	0		
DDA	PCL 2	0	0		
	PCL 3	0	0		
ENC	PCL 4	0	0		
PCL	PCL 5		 		
LI0		Ū	Ū		
RIO 0					
RIO 1					
DAC					
ADC					
Library Version : 4.01				40 MHz	

圖 2-2.3

工業技術研究院 Industrial Technology Research Institute

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

(d)LIO 顯示區(如圖 2-2.4 所示)

①Interrupt Counter

LDI 0~7: LIO 前 8 點的中斷計時器。

DFI 0~6: Double Function 前7點的中斷計數器。

請參考 4.6 LIO 主功能選項各節說明。

②Refresh Target

Refresh Watch Dog Timer 的設定值。

請參考 4.6 LIO 主功能選項各節說明。

③Refresh Count

Refresh 所跑的次數。

💣 EPCIO Test Program for Mult	i Cards : Noname.set				
		ve As	>		Quit
EPCIO-6000/6005 Card 🔻	DDA ENC	PCL [IO RIO Out. RIO In.	RIO INT. ADC	DAC
Card Index : 0 🔹	Interru	pt Count	Interrupt Coun	t	
Setting	LDI 0	0	DFI 0	0	
System Parameter	LDI 1	0	DFI 1	0	
	LDI 2	0	DFI 2	0	
	LDI 3	0	DFI 3	0	
ENC	LDI 4	0	DFI 4	0	
PCL	LDI 5	0	DFI 5	0	
LIO	LDI 6	0	DFI 6	0	
RIO 0	LDI 7	0			
RI0 1	Refresh Target	0	Refresh Count	0	
DAC					
ADC					
Library Version : 4.01			4	0 MHz	

圖 2.2-4

(e)RIO Out.顯示區(如圖 2-2.5 所示)

本顯示區共有 2 Set,每個 Set 含有 3 個 Slave(RIO0S0、RIO0S1、RIO0S2、 RIO1S0、RIO1S1、RIO1S2),每個 Slave 具 64 bits 輸出。 其中 Port 0~Port 3 為 16 bits 表示法。

請參考 4.7 及 4.8 RIO 主功能選項各節說明。

🧬 EPCIO Test Program for Multi Cards : Noname.set 📃 🗖 🔀							
		Save As	=	🟠 🚺	Run	×	Quit
EPCIO-6000/6005 Card 💌	DDA EN		_10 R	10 Out.	RIO In. RI0	DINT. ADC	DAC
Card Index : 0 •	RIO 0 Port 0	fe	d c b	a 9	876	5432	1 0
DDA	Port 1 Port 2						
ENC PCL	RIO 1 Port 0	fe	d c b	a 9	876	5432	1 0
LIO RIO 0	Port 1 Port 2						
RIO 1 DAC	Port 3						
ADC							
Library Version : 4.01					40 MH	Iz	

圖 2-2.5

(f)RIO In.顯示區(如圖 2-2.6 所示)

本顯示區共有 2 Set,每個 Set 含有 3 個 Slave(RIO0S0、RIO0S1、RIO0S2、 RIO1S0、RIO1S1、RIO1S2),每個 Slave 具 64 bits 輸出。 其中 Port 0~Port 3 為 16 bits 表示法。

請參考 4.7 及 4.8 RIO 主功能選項各節說明。

🧬 EPCIO Test Program for Multi Cards : Noname.set 📃 🗖 🔀							
		Save As	=	· 🟠 📃	Run	×	Quit
EPCIO-6000/6005 Card 💌	DDA ENG	PCL I	LIO R	10 Out. [RIO In. RIC	DINT. ADC	DAC
Card Index : 0 Setting System Parameter DDA ENC PCL ILIO RIO 0 RIO 1 DAC	RIO 0 Port 0 Port 1 Port 2 Port 3 RIO 1 Port 0 Port 1 Port 2 Port 3	f e	d c b	a 9 a 9	8 7 6	5 4 3 2	
ADC							
Library Version : 4.01					40 MH	Iz	

圖 2-2.6

(g)RIO INT.顯示區(如圖 2-2.7 所示)

I0~I3:每個 Slave 前4點 input 產生中斷的次數。

Fail:每個 Set 傳輸錯誤中斷次數。

Status:傳輸狀態。1 表傳輸正常、0 表傳輸異常或 Stop 表示停止傳輸。 請參考 4.7 及 4.8 RIO 主功能選項各節說明。

💣 EPCIO Test Program for Mult	ti Cards : Noname.	.set						
		Save As		⇒☆	Ru	n	\times	Quit
EPCIO-6000/6005 Card 🔽	DDA ENC	PCL	LIO	RIO Out	. RIO In	. RIO IN	F. ADC	DAC
Card Index : 0 🔹	Interrupt Cou	int 10	11	12	13	Fail		
Setting	RIO 0	0	0	0	0	0		
System Parameter	RIO 1	0	0	0	0	0		
DDA								
ENC		Status	5					
PCL	RIO 0	Stop						
LI0	RIUT	Stup						
RIO 0								
RIO 1								
DAC								
ADC								
Library Version : 4.01					4	10 MHz		

圖 2-2.7

(h)ADC 顯示區(如圖 2-2.8 所示)
Input:各 Channel ADC 輸入值
Comparator:各 Channel Compare 中斷次數
Converter One:Convert Ch.中斷次數
Converter Tag:Tag Ch.中斷次數
請參考 4.10 ADC 主功能選項各節說明。

💣 EPCIO Test Program for Mult	i Cards : Noname.set				
		ve As 🚥	⇒å Run	L. X	Quit
EPCIO-6000/6005 Card 💌	DDA ENC	PCL LIO	RIO Out. RIO In.	RIO INT. ADC	DAC
Card Index : 0 🔹		Input	Comparator	Interrupt Count	
Setting	ADC 0	0.00	0.00	0	
System Parameter	ADC 1	0.00	0.00	0	
	ADC 2	0.00	0.00	0	
	ADC 3	0.00	0.00	0	
ENC	ADC 4	0.00	0.00	0	
PCL	ADC 5	0.00	0.00	0	
LIO	ADC 6	0.00	0.00	0	
RIO 0	ADC 7	0.00	0.00	0	
RI0 1	Converter One	0	Converter Tag	0	
DAC					
ADC					
Library Version : 4.01			40	I MHz	

圖 2-2.8

工業技術研究院 Industrial Technology Research Institute

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

(i)DAC 輸出值顯示區(如圖 2-2.9 所示) 各 Channel DAC 軟體命令輸出值。 請參考 4.9 DAC 主功能選項各節說明。

💣 EPCIO Test Program for Mult	i Cards : Nonai	me.set				
		Save As		Run	×	Quit
EPCIO-6000/6005 Card 💌	DDA EN	C PCL LIO) RIO Ou	it. RIO In. RI	O INT. ADC	DAC
Card Index : 0 🔹				DAC	0:0.V	
Setting		t		DAC	1:0.V	
System Parameter		t		DAC	2:0.V	
	,	i		DAC	3 : 0.V	
	,	I		DAC	4:0.V	
ENC				DAC	5:0.V	
PCL						
LIO						
RIO 0						
RIO 1						
DAC						
ADC						
Library Version : 4.01				40 M	Hz	

圖 2-2.9

Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

第三章EPCIO 快速測試程式

工業技術研究院

3.1 系統基本安裝步驟

- A、安裝時請將系統電源關閉,包含電腦,馬達等。
- B、確定所使用的 PC ISA Bus(PC PCI Bus)擴充插槽(SLOT)是完整之 16 bits 擴充插槽。
- C、設定本卡之基址(Base Address)(for ISA),並且確定自基址以下(含)連續
 32 各 I/O PORT 未被其他資源佔用(設定方式請參考 EPCIO-601, EPCIO-605, EPCIO-400、EPCIO-405使用手冊)。
- D、將 EPCIO 系列運動控制卡插入 PCI(ISA) Bus 中並固定。
- E、將週邊電路配好並經由接頭插入運動控制卡,再鎖上螺絲固定(週邊電路 配線可參考 EPCIO-601/605, EPCIO-400/405, EPCIO-6000/6005, EPCIO-4000/4005使用手冊)。
- F、確定電腦及其連接驅動之馬達,I/O 模組等均需確實接地;使電腦,馬 達及 I/O 等週邊模組在同一參考電位,以免啟動時因為地面參考電位不 同而造成系統損壞。
- G、啟動電腦。
- H、檢查電腦在 IRQ3,5,7,10,11,12,15(for ISA)中選定一組未衝突之 中斷給運動控制卡使用。
- I、安裝啟動本卡所附之測試程式(進入 Windows 模式,在已安裝好之目錄下 執行 Driver Test Tool.exe(for PCI-Bus)或 Driver Test Tool.exe (for ISA-Bus) 檔案(依照使用之控制卡 Bus 介面而定)。
- J、檢查測試程式所在之目錄是否有以下之檔案: EPCIOTest4ISA.exe, EPCIOTest4PCI.exe 檔案。

3.2 六軸同動脈波輸出控制測試

3.2.1 硬體接線(參考系統 4.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為 例,下圖(圖 3-2.1)為 EPCIO-601 與脈波控制型伺服馬達/步進馬達系統 連接圖

圖 3-2.1

- xDDA_OutA*、~xDDA_OutA*、~xDDA_OutB*、~xDDA_OutB*為第 *組開迴路控制機制之脈波命令輸出點,須分別接至第*組 MOTOR DRIVER 之脈波命令輸入端,如圖所示(請參閱 MOTOR DRIVER 之使 用手冊),另外為了觀察馬達運轉情形,可將該組馬達伺服器之編碼器 輸出端自~xENC_InA*、 xENC_InA*、~xENC_InB*、xENC_InB*、 ~xENC_InC*、xENC_InC*接入 EPCIO-601。
- 建議上面這十條線均使用對角線以降低共模雜訊,另外如圖所示使用
 隔離網將這十條線與外界隔離,以降低外界對傳輸之干擾。
- 將隔離網一端與 EPCIO-601 之 SCSI II 100PIN 接頭外殼對接,另一端 與 Motor Driver 之大地對接,並確定 PC 及 Servo Driver 都有接大地 (註: SCSI II 100PIN 接頭外殼與 PC 外殼對接,而外殼通常與大地對 接)。
- 重要---須有一條地線將 Servo Driver 之大地與 EPCIO-601 之 AGND 對 接(這點非常重要,因為有可能造成致命損壞)。

工業技術研究院

Industrial Technology

Research Institute

3.2.2 測試

- A、啟動電腦及執行測試程式。
- B、設定 Base Address (for ISA-Bus)設定運動控制卡之 Base Address(進入 System Parameter 之 Base Address,選擇運動卡所設定之 Base Address 後,按OK)。
- C、設定 IRQ (for ISA-Bus)
 - →確定一位衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ,選擇適當之 IRQ 之後,按 OK)。
- D、設定 DDA Pulse Width
 - →確定脈波型馬達驅動器所需之最小脈波寬度,將其設定至運動控制卡 (進入 DDA 之 Pulse Width,選擇適當數值後,按 Ok)。
- E、設定 DDA Pulse Format
 - →確定脈波型馬達驅動器之脈波輸入格式,將其設定至運動控制卡(進入DDA之Pulse Format,選擇各軸適當脈波格式後按Ok)。
- F、設定 ENC Input Control
 - →確定脈波型馬達驅動器之馬達編碼器迴授脈波格式,將其設定至運動 控制卡(進入 ENC 之 Input Control 中的 Setting,設定各軸脈波格 式,按 OK)(若為 A/B phase 格式,還可輸入乘倍率)。
- G、確定運動控制卡之 Emergency Stop 輸入點不會動作(參考
 EPCIO-601/605, EPCIO-400/405, EPCIO-6000/6005, EPCIO-4000/4005
 使用手冊)。
- H、SERVO ON 馬達驅動器。

K、設定 Pulse Command 視窗

→進入 DDA, 而 Pulse Command 設定方法如下(請參考圖 3-2.2):

DDA Setting			
DDA Time: 🔟	Min. Stock : 30	Cycle Interrupt	🔽 Start Engine
Channel 0 Format : P/D 👻	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	E Reverse
Channel 1			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 2			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 3			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
Channel 4			()
Format : P/D 🔫	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 5			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
Advanced Setting		C	Cancel OK

圖 3-2.2

- 注意 Pulse 欄位值的設定, Pulse 值越小,馬達速度越慢。
- 當設定 Pulse=X, Timer=Y, Repeat=Z, Backward 不選取時其意義為軟體發送Z個迴圈,其中每個迴圈中包含了Y個DDA Command 而每一DDA Command 為送出 X Pulses。所以當 DDA Engine 完成 輸出後,將有X乘Y乘Z個 Pulse 輸出。

 上述之情況執行時在 DDA 狀態顯示區(如圖 3-2.3 所示)的 Target 欄 會顯示(X×Y)個 Command,在 Counter 欄會顯示目前 Counter 值且 最終顯示(X×Y×Z)個 Pulse。
 圖 3-2.2 中 Pulse=10, Times=10, Repeat=10, Backward 不選取,所 以執行時在 Target 欄會顯示(10×10=100)個 Command,在 Counter 欄部分會顯示目前 Counter 值且最終會顯示 (10×10×10=1000)個 Pulse。

- 當設定 Pulse=X, Timer=Y, Repeat=Z, Backward 選取時,則軟體發送Z個迴圈,其中第一個迴圈中包含了Y個DDA Command而每一DDA Command為X Pulses(正轉),第二個迴圈中包含了Y個DDA Command,每一個DDA Command,每一個DDA Command,而每一DDA Command為X Pulses(正轉),第四個迴圈中包含了Y個DDA Command,每一個DDA Command為-X Pulses(-表反轉).....如此一迴圈正轉一迴圈反轉直至最後一迴圈輸出。所以當DDA Engine 完成輸出後,其 Pulse淨輸出數為X乘Y乘Z個(當Z為奇數),或為0(當Z為偶數))。
- 上述之情況執行時在 Target 欄會顯示(X×Y)個 Command,在 Counter 欄會顯示目前 Counter 值且最終會顯示(X×Y×Z)個 Pulse 或0個 Pulse。

💣 EPCIO Test Program for Mult	ti Cards : Non	ame.set				
		Save As	🔂 💧	Run	\sim	Quit
EPCIO-6000/6005 Card 💌	DDA E	NC PCL L	IO RIO Out	t. RIO In. RI	O INT. ADC	DAC
Card Index : 0 🔹		Target	Runn	ing S	tock	
Setting	DDA 0	100	0	0		
System Parameter	DDA 1	100	0	0		
DDA	DDA 2	100	0	0		
	DDA 3	100	0	0		
ENC	DDA 4	100	0	0		
PCL	DDA 5	100	0	0		
LI0						
RIO 0						
RI0 1						
DAC						
ADC						
Library Version : 4.01				40 MI	Hz	

圖 3-2.3

- K、執行(Run)
- L、執行完了之後按 Stop(X)

3.3 手輪輸入快速測試

3.3.1 硬體接線(參考系統 3.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為例,下二圖分別用 Line Driver 輸出型手輪(如圖 3-3.1)及 Voltage 輸出型手輪來(如圖 3-3.2)與 EPCIO-601 配接

工業技術研究院 Industrial Technology Research Institute

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

3.3.2 測試

- A、啟動電腦及執行測試程式。
- B、設定 Base Address(for ISA-Bus)
 - →設定運動控制卡之 Base Address(進入 System Parameter 之 Base
 - Address,選擇運動卡所設定之 Base Address 後,按OK)。
- C、設定 IRQ(for ISA-Bus)

→確定一位衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ,選擇適當之 IRQ 之後,按 OK)。

D、設定 ENC 之 Input Control(如圖 3-3.3 所示)

→進入 ENC 之 Input Control 的 Setting,設定手輪輸入軸脈波格式為 A/B phase 格式,並且輸入乘倍率(Multiple)。

- E、執行(Run)。
- F、轉動手輪,手輪輸入值將出現在 Counter 欄,假設手輪順時針轉時增加/ 減少4格(乘倍率為4時)或2格(乘倍率為2時)或1格(乘倍率為1時)或 0格(乘倍率為0時)。
- G、執行完了後按 Stop(X)。
- H、調整乘倍率(Multiple),再重新執行,調整手輪並觀察 Counter 欄變化。
 →進入 ENC 之 Input Control 的 Setting,設定乘倍率(Multiple)為1,2, 4 或 0(禁制輸入)。

Input Control Setting					×
_ ENC 0	ENC 1	ENC 2	ENC 3	ENC 4	ENC 5
🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A
🗆 Inverse B	🗖 Inverse B	🗖 Inverse B	🗖 Inverse B	🗖 Inverse B	🗆 Inverse B
🗖 Inverse C	🗖 Inverse C	🗖 Inverse C	🗖 Inverse C	🗖 Inverse C	🗖 Inverse C
🗆 Swap AB	🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗆 Swap AB
A/B 👻	A/B ▼	A/B ▼	A/B ▼	A/B ▼	A/B ▼
A/B	Multiple :	Multiple :	Multiple :	, Multiple :	Multiple :
P/D	4 -	4 -	4 -	4 -	4 -
None	·			·	
			C	Cancel	ОК

圖 3-3.3

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

3.4 六軸同動電壓輸出閉迴路控制快速測試

3.4.1 硬體接線(參考系統 4.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為例, 如下圖(圖 3-4.1)為 EPCIO-601 與速度控制型伺服馬達系統連接圖

圖 3-4.1

- DAC/D*為第*組閉迴路控制機制之速度命令輸出(以電壓命令型式 輸出),須接至第*組 Servo Driver 之 V_{cmd}(Velocity Command)輸入 點,而 DAC/D*之地點—AGND 須與該組 V_{cmd}之地點—GND 對接
- Servo Driver 之馬達編碼器訊號(A/B/Z 訊號),須以 Differential 型 式接回 EPCIO-601(如圖 3-4.1 所示),建議 A、A/及 B、B/及 Z、Z/ 這三組訊號均使用對絞線以降低共模雜訊,另外如圖 3-4.1 示,使 用隔離網將這三組線與外界隔離,以降低外界對傳輸之干擾
- 將隔離網一端與 EPCIO-601 之 SCSI II 100PIN 接頭外殼對接,另一端與 Servo Driver 之大地對接,並確定 PC 及 Servo Driver 都有接 大地(註: SCSI II 100PIN 接頭外殼與 PC 外殼對接,而 PC 外殼通常 與大地對接)
- 重要---須有一條地線將 Servo Driver 之大地與 EPCIO-601 之 AGND 對接(這點非常重要,因為有可能造成致命損壞)

- 3.4.2 測試
 - A、啟動電腦及執行測試程式。
 - B、設定 Base Address(For ISA)
 - →設定運動控制卡之 Base Address(進入 System Parameters 之 Base
 - Address ,選擇運動卡所設定之 Base Address 後,按OK)。
 - C、設定 IRQ(For ISA)

→確定一未衝突之中斷並將其設定給運動控制卡(進入 System Parameters 之 IRQ ,選擇適當之 IRQ 之後,按 OK)。

- D、確定馬達驅動器之驅動命令輸入格式為速度型(-10V~10V)。
- E、設定 ENC Input Control
 - →確定馬達驅動器之馬達編碼器迴授格式,將其設定至運動控制卡(進入 ENC 之 Input Control 中 Setting,設定各軸脈波格式,按 OK)(若為 A/B phase 格式,還可輸入乘倍率)。
- F、確定運動控制卡之 Emergency Stop 輸入點不會動作(參考 EPCIO-601, EPCIO-602, EPCIO-400 使用手冊)。
- G、SERVO ON 馬達驅動器。

H、設定 Pulse command 視窗(如圖 3-4.2 所示)

DA Setting			
DDA Time : 10	Min. Stock : 30	Cycle Interrupt	I⊄ Start Engine
Channel 0 Format : P/D	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
Channel 1 —			
Format : P/D 🗸	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
- Channel 2			
Format : P/D 🚽	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
-Channel 3-			
Format : P/D 🚽	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times: 10	Repeat : 10	☐ Reverse
-Channel 4			2244
Format : P/D 🚽	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
- Channel 5			
Format : P/D 🚽	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	☐ Reverse
Advanced Setting	.	C	Cancel OK

圖 3-4.2

→進入 DDA,而 Pulse Command 設定方式如下:

- 注意 Pulse 欄位值的設定, Pulse 值越小,馬達速度越慢。
- 當設定 Pulse=X, Times=Y, Repeat=Z, Back=NO 時其意義為軟 體發送 Z 個迴圈,其中每個迴圈中包含了 Y 個 DDA Command 而 每一 DDA Command 為送出 X 個 Pulse。所以當 DDA Engine 完成 輸出後,將有 X 乘 Y 乘 Z 個 Pulse 輸出至閉迴路控制機制,驅動馬 達在閉迴路控制狀態下最終行走(X×Y×Z)個 Pulse
- 上述之情況執行時在 DDA 顯示區上的 Target 欄(如圖 3-4.3 所示) 會顯示(X×Y)個 Command,在 Counter 欄部份會顯示目前 Counter 值且最終會顯示(X×Y×Z)個 Pulse。
- 當設定 Pulse=X, Times=Y, Repeat=Z, Back=YES,則軟體發送Z個迴圈,其中第一個迴圈中包含了Y個DDA Command 而每一DDA Command為 X Pulses(正轉),第二個迴圈中包含了Y個DDA Command,每一DDA Command為-X Pulses(-表反轉),第三個迴圈中包含了Y個DDA Command,每一DDA Command為 X Pulses(正轉)第四個迴圈中包含了Y個DDA Command,每一DDA

業技術研究院

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

Command 為-X Pulses(-表反轉)......如此一迴圈正轉一迴圈反轉直 至最後一迴圈輸出。所以當 DDA Engine 完成輸出至閉迴路控制機 制,其馬達最終行走 Pulse 淨輸出數為 X 乘 Y 乘 Z 個(當 Z 為奇數), 或為 0(當 Z 為偶數)。

💣 EPCIO Test Program for Mult	ti Cards : Noname	elset			
		Save As		Run 🗡	Quit
EPCIO-6000/6005 Card 🔽	DDA ENC	PCL LIO	RIO Out.	RIO In. RIO INT. ADC	DAC
Card Index : 0 🔹		Target	Running	g Stock	
Setting	DDA 0	100	0	0	
System Parameter	DDA 1	100	0	0	
	DDA 2	100	0	0	
	DDA 3	100	0	0	
ENC	DDA 4	100	0	0	
PCL	DDA 5	100	0	0	
LI0					
RIO 0					
RI0 1					
ADC					
Library Version : 4.01				40 MHz	

圖 3-4.3

- 上述之情況執行時在 Target 欄會顯示(X × Y)個 Command,在 Counter 欄會顯示目前 Counter 值且最終會顯示(X×Y×Z)個 Pulse 或0個 pulse
- 圖中 Pulse=10, Times=10, Repeat=10, Back=yes 所以執行時在 Target 欄會顯示(10×10=100)個 Command,在 Counter 部份會顯示目前 Counter 值且最終會顯示 0 個 Pulse(因 repeat=10 為偶數)

J、執行(Run)

- K、執行完了 PCL.601 預設檔之後(馬達停止),若各軸最終值不為0,調整 各軸 offset 調整鈕, 使各軸 counter 欄之值為 0, 如此下次執行時其值便 會為0±1
- L、按 Stop(X)停止執行

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

3.5 LIO輸出入測試

- 3.5.1 硬體接線(參考系統 4.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為 例,以下為 EPCIO-601 之 LIO 輸入(如圖 3-5.1 所示)及輸出(如圖 3.5-2 所示)系統連接圖
 - ◎ 下面以 HOME_II 輸入點為例說明,其他輸入點類推
 - ◎ 當開關導通時,光耦合器啟動,此時 EPCIO-601 認定輸入為0

圖 3-5.1

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

◎上面電路是以 INH_01 輸出點為例,其他輸出點類推

工業技術研究院

Industrial Technology Research Institute

- ◎當輸出訊號為0時,電晶體(達靈頓驅動級)導通,負載動作
- ◎每個輸出點驅動最大負載能力為 60mA,所以不可再無負載狀況將 24V 電源直接接上輸出點
- ◎當負載為 RELAY 時,因有瞬間過電壓保護二極體,

圖 3.5-2

- 3.5.2 測試
 - A、啟動電腦及執行測試程式。
 - B、設定 Base Address(For ISA)

→設定運動控制卡之 Base Address(進入 System Parameters 之 Base
 Address,選擇運動卡所設定之 Base Address 後,按OK)。

C、設定 IRQ(For ISA)

→確定一未衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ ,選擇適當之 IRQ 之後,按 OK)。

D、設定輸出值(如圖 3-5.3 所示)

→進入 LIO 之 Output Value 處選取設定,其中 LDO 15-0 設定為 input 所以不予設定;另外填 12 進位值於 Bit 27-16 欄,其中若以二進位看此 12 進位值,則最低位元為 LDO16 之值)。

E、執行(Run)。

Coutput Value -						
🗆 LDO 0	🗆 LDO 4	🗆 LDO 8	🗆 LDO 12	🗆 LDO 16	🗆 LDO 20	🗆 LDO 24
🗆 LDO 1	🗆 LDO 5	🗖 LDO 9	🗖 LDO 13	🗆 LDO 17	🗖 LDO 21	🗖 LDO 25
🗆 LDO 2	🗆 LDO 6	🗖 LDO 10	🗆 LDO 14	🗆 LDO 18	🗖 LDO 22	🗖 LDO 26
🗖 LDO 3	🗖 LD0 7	🗖 LD0 11	🗖 LDO 15	🗆 LDO 19	🗖 LDO 23	🗖 LDO 27
C Output	🗖 Output	🗖 Output	C Output	🗹 Output	🔽 Output	C Output

圖 3-5.3

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

3.6 RIO 輸出入測試

3.6.1 硬體接線(參考系統 3.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為 例,圖 3-6.1 為 EPCIO-601 與兩組 EDIO-S001 之 RIO 系統連接圖

- 3.6.2 測試
 - A、啟動電腦及執行測試程式。
 - B、設定 Base Address(For ISA)
 - →設定運動控制卡之 Base Address(進入 System Parameter 之 Base Address,選擇運動卡所設定之 Base Address後,按OK)。
 - C、設定 IRQ(For ISA)

→確定一未衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ ,選擇適當之 IRQ 之後,按 OK)。

- D、執行(Run)。
- E、觀察 RIO In.(如圖 3-6.2 所示)及 RIO Out.(如圖 3-6.3 所示)欄位,其中 RIO Out.欄位之值會依跑馬燈方式輸出並顯示在其相對應之 EDIO-S001 模組 上(所謂跑馬燈方式即 RIO Out.欄位之每個 Port 會依照模組上的顯示以 √ 表示),另外 EDIO-S001 模組之輸入會顯示在其相對應之 RIO In.之 欄位上以 √ 表示(對應關係請參考 EPCIO-601/605, EPCIO-400/405, EPCIO-6000/6005, EPCIO-4000/4005 使用手册說明)。

🔗 EPCIO Test Program for Multi Cards : Noname.set										
		Save As		⇒ 🟠	5	tan		\times	Qu	it
EPCIO-6000/6005 Card 💌	DDA EN	C PCL	LIO	RIO 0	ut. R	IO In. R	IO IN	T. ADC	DAC	
Card Index : 0 🔹	RIO 0	fe	d c	b a	98	76	5	432	10	
Setting	Port 0									
System Parameter	Port 1									
DDA	Port 2									
ENC	Port 3									
	RIO 1	fe	d c	b a	98	76	5	4 3 2	10	
PCL	Port 0									
LIO	Port 1									
RIO 0	Port 2									
RI0 1	Port 3									
DAC										
ADC										
Library Version : 4.01						40 M	Hz			

圖 3-6.2

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS 💣 EPCIO Test Program for Multi Cards : Noname.set P ---- 🚔 🟠 X Quit Run. EPCIO-6000/6005 Card 🔻 DDA ENC PCL LIO RIO Out. RIO In. RIO INT. ADC DAC fedcba9876543210 Card Index : 0 RIO 0 • Setting Port 0 System Parameter ... Port 1 Port 2 DDA ... Port 3 ENC ... RI0 1 fedcba9876543210 PCL ... Port 0 LIO ... Port 1 RIO 0 ... Port 2 Port 3 RIO 1 ... DAC ... ADC ... 40 MHz Library Version : 4.01

3.7 ADC輸入測試

3.7.1 硬線接線(參考系統 3.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為 例,圖 3-7.1 為 EPCIO-601 之 ADC 輸入系統連接圖

圖 3-7.1

- 3.7.2 測試
 - A、啟動電腦及執行測試程式。
 - B、設定 Base Address(For ISA)
 - →設定運動控制卡之 Base Address(進入 System Parameter 之 Base Address ,選擇運動卡所設定之 Base Address 後,按OK)。
 - C、設定 IRQ(For ISA)

→確定一未衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ ,選擇適當之 IRQ 之後,按 OK)。

- D、輸入電壓範圍為-10V~10V 請將 EPCIO 運動控制卡設定為 Bipolar 模式, 若輸入電壓範圍為 0V~20V 請將 EPCIO 運動控制卡設定為 Unipolar 模式。
- E、設定 ADC Bi/Unipolar mode 使其與硬體電路板設定相同
 →進入 ADC 設定 Bi/Unipolar。(如圖 3-7.2)

ADC Setting				
ADC 0				Mode Setting
Preload : 0	Trig. Control : None	- Bipolor	▼ I Enable	Mode :
-ADC 1		Bipolor		Free
Preload : 0	Trig. Control : None	- Bipolor	▼ 🔽 Enable	Compare Mask :
- 4DC 2				No Mask 🗸
Preload : 0	Trig. Control : None	▼ Bipolor	▼ 🔽 Enable	Select Single :
ADC 3				U
Preload : 0	Trig. Control : None	Bipolor	🔹 🗹 Enable	Select Tag :
ADC 4				U -
Preload : 0	Trig. Control : None	- Bipolor	▼ 🔽 Enable	Trigger
ADC 5				C One Finish
Preload : 0	Trig. Control : None	▼ Bipolor	▼ 🔽 Enable	Tag Finish
ADC 6				
Preload : 0	Trig. Control : None	- Bipolor	▼ 🔽 Enable	Clock Divider :
- ADC 7				50
Preload : 0	Trig. Control : None	- Bipolor	▼ 🛛 Enable	₩ Enable ADC
			Cancel	ОК

圖 3-7.2

F、執行(Run)。

觀察 ADC 欄之輸入電壓值(如圖 3-7.3 所示)。

💣 EPCIO Test Program for Mult	i Cards : Noname.se	at			
	<u>≤</u>	ave As 🗖	•⇒ ☆ Run		Quit
EPCIO-6000/6005 Card 💌	DDA ENC	PCL LIO	RIO Out. RIO In.	RIO INT. ADC	DAC
Card Index : 0 🔹		Input	Comparator	Interrupt Count	
Setting	ADC 0	0.00	0.00	0	
System Parameter	ADC 1	0.00	0.00	0	
	ADC 2	0.00	0.00	0	
DDA	ADC 3	0.00	0.00	0	
ENC	ADC 4	0.00	0.00	0	
PCL	ADC 5	0.00	0.00	0	
LIO	ADC 6	0.00	0.00	0	
RIO 0	ADC 7	0.00	0.00	0	
RIO 1	Converter One	: 0	Converter Tag	0	
DAC					
Library Version : 4.01	1		40	MHa	
LINIALY VEISION . 4.01			40	MIIIZ	

圖 3-7.3

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

3.8 DAC 輸出測試

3.8.1 硬體接線(參考系統 3.1 基本安裝步驟及以下說明),以 EPCIO-601 卡為例,圖 3-8.1 為 EPCIO-601 之 ADC 輸入系統連接圖

圖 3-8.1

■ DAC/D*為第*組電壓輸出點,須外接至一組大於2kohms之負載,可使 用電壓量測儀器對其兩端量測電壓輸出值。

- 3.8.2 測試
 - A、啟動電腦及執行測試程式。
 - B、設定 Base Address (for ISA-Bus)
 - →設定運動控制卡之 Base Address(進入 System Parameter 之 Base
 - Address ,選擇運動卡所設定之 Base Address 後,按OK)。
 - C、設定 IRQ(for ISA-Bus)

→確定一未衝突之中斷並將其設定給運動控制卡(進入 System Parameter 之 IRQ ,選擇適當之 IRQ 之後,按 OK)。

- D、確定運動控制卡之 Emergency Stop 輸入點不會動作(參考 EPCIO-601/605, EPCIO-400/405, EPCIO-6000/6005, EPCIO-4000/4005 使用手冊)。
- E、執行(Run),執行完了之後,量測各組 DAC 輸出電壓。
- F、按 Stop(X)。
- G、調整運動控制卡上各軸 offset 調整鈕,使各軸輸出量測值為0,方式如下
- H、設定 DAC Output Value

→進入 DAC 顯示區(如圖 3-8.2 所示),將每個 DAC 調為 0V。

💣 EPCIO Test Program for Mult	ti Cards : Noname.set			
		→ 🟠	Run 🗡	Quit
EPCIO-6000/6005 Card 🔽	DDA ENC PCL	LIO RIO Ou	ıt. RIO In. RIO INT. ADC	DAC
Card Index : 0 🔹	,	L	DAC 0 : 0.V	
Setting		i	DAC 1 : 0.V	
System Parameter			DAC 2 : 0.V	
DDA			DAC 3 : 0.V	
	,		DAC 4:0.V	
ENC	-	1	DAC 5 : 0.V	
PCL				
LI0				
RIO 0				
RIO 1				
DAC				
ADC				
Library Version : 4.01			40 MHz	

圖 3-8.2

- I、執行,然後根據輸出電壓量測值,調整 DAC offset 調整鈕使其調為0。
- J、改變其他輸出值,輸出看看

→設定 DAC Output Value(進入 DAC 顯示區,將每個 DAC 調為 5V)。

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

第四章 參數設定與功能說明

4.1 主功能選項(請參考圖 4-1.1)

DDA 5

LIO ... RIO 0 ... RIO 1 ... DAC ...

Library Version : 4.01

圖 4-1.1

100

0

0

40 MHz

4.2 System Parameter功能選項

(1)Card Index 設定(如圖 4-1.2 所示)

運動控制卡編號,範圍從 0~5。

Card Index :	0	-
	0	<u>^</u>
INC NO	2	-
Base Address :	3	
Wait State :	8	<u>•</u>
Interrupt Period :	10	•
System Clock :	40	MHz

圖 4-1.2

(2)Interrupt 設定(如圖 4-1.3 所示) (for ISA-Bus)

可選用的 IRQ 有 IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ12, IRQ15, 設定時請先排除已被使用的 IRQ 號碼。

Card Index :	0	•
IRQ No. :	7	+
Base Address :	7 10	•
Wait State :	11	-
nterrupt Period :	10	•
System Clock :	40	MHz

圖 4-1.3

(3)Base Address 設定(如圖 4-1.4 所示)

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

設定板基址,設定時請配合硬體電路板上的位址設定,可設定範圍由 200H 至 3F0H,間隔為 20H。

Card Index :	0	-
IRQ No. :	7	•
Base Address :	0×240	•
Wait State :	0×240 0×260	
Interrupt Period :	0×280 0×2A0	-
System Clock :	40	MHz

圖 4-1.4

(4)Wait State 時間長度設定(如圖 4-1.5 所示)

設定讀取/寫入 EPCIO 裝置時之系統等待時間,為提高存取速度,請把此項設為1個 Wait state。

Sy	rstem Paramter Setting	x
	IRQ No. :	7 💌
	Base Address :	0×240 💌
	Wait State :	8
	Interrupt Period :	5 <u>•</u> 6 7
	System Clock :	8 v
	Cancel	ОК

圖 4-1.5

(5)IRQ 觸發時間長度設定(如圖 4-1.6 所示,並請參考圖 4-1.7 之說明) (for ISA-Bus)

Y EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

本參數可設定 IRQ 發生時, IRQ Low active 週期長度。

Card Index :	0	-
IRQ No. :	7	•
Base Address :	0×240	-
Wait State :	8	•
Interrupt Period :	567	-
System Clock :	8	•

圖 4-1.6

工業技術研究院 Industrial Technology Research Institute

(6)System Clock 設定.

本參數可設定系統的週期。(如圖 4-1.8 所示)。

Card Index :	0	•
IRQ No. :	7	•
Base Address :	0×240	•
Wait State :	8	•
Interrupt Period :	10	•
System Clock :	40	MHz

圖 4-1.8

4.3 DDA主功能選項

(1)Set DDA Time.(請參考圖4-3.1所示)

工業技術研究院 Industrial Technology Research Institute

設定DDA Time。

(2)Set Minimum FIFO Stock Number.

設定DDA FIFO中最小儲存筆數。搭配Interrupt設定,當DDA FIFO中命令儲存量 小於最小儲存筆數時即發出中斷。

(3)Set DDA Start/Stop(如圖4-3.1所示)

啟動各軸 DDA 脈波輸出功能。當欲開啟 DDA 輸出軸功能時,必須把該軸之 Output 打勾,而當有任一軸之輸出功能被開啟時, Start Engine 必須同時打勾。當 Start Engine 未被選取,無論該軸 Enable 是否被選取,輸出功能皆被關閉。

(1)DDA Time.	(2)Set Minimum FIFO Stock Number.		Enable DDA
DDA Setting			
	Min. Stock : 30	🔽 Cycle Interrupt	I Start Engine
Format : P/D -	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 1			
Format : P/D 🗾	Pulse Width : 40	🔽 Output	✓ Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 2			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 3	17 <u>16</u>		
Format : P/D 🛛 🗸	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 4		(A. 505	
Format : P/D 👻	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Channel 5			
Format : P/D 🛛	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Advanced Setting		0	Cancel OK

圖 4-3.1

各軸 Enable

(4)Set DDA Pulse Format(如圖 4-3.2 所示)

DDA 可設定不同的脈波輸出型式,包括 Pulse/Direction、CW/CCW、A/B 或禁止輸出等。除此之外,亦可選擇 Advanced Setting,將輸出脈波之A, B 相作交換或反相。 Inverse A:將A 訊號反相。 Inverse B:將B 訊號反相。

Swap AB:將A,B訊號交換。

Advanced Setting					
_ DDA 0	_ DDA 1	_ DDA 2	_ DDA 3	DDA 4	DDA 5
🗆 Inverse A	🗆 Inverse A	🗆 Inverse A	🗆 Inverse A	🗆 Inverse A	🗖 Inverse A
🗖 Inverse B	🗆 Inverse B	🗆 Inverse B	🗆 Inverse B	🗆 Inverse B	🗖 Inverse B
🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗆 Swap AB	🗖 Swap AB	🗖 Swap AB
			Canc	el	ОК

圖 4-3.2

(5)Set DDA Pulse Width

當 DDA 的脈波輸出型式(Format)選擇 P/D 或 CW/CCW 時, 脈波的寬度是 可經由軟體規劃(如圖 4-3.3 所示), 規劃的方式為當設定值為 N 時, DDA 脈波寬度可由公式(3)求得

$$DDA Pulse Width = N \times System Clock$$
(3)

使用者請依驅動器之要求設定。下圖 4-3.4 為輸出波形示意圖

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

(5)Set Dda Pulse W	/idth (6)Set D	Oda Pulse Command	(7)Set Interruption Control Word.
DA Setting			
DDA Time : 10	Min. Stock : 30	Cycle Interrupt	🖉 Start Engine
Format : P/D	Pulse Width : 40	🖊 🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
- Channel 1 Format : P/D	Pulse Width : 40	✓ Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
-Channel 2			
Format : P/D 💌	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
-Channel 3			
Format : P/D 💌	Pulse Width :/ 40	🔽 Output	Stock Insufficiency Interrupt
Pulse: 10	Times : 10	Repeat : 10	Reverse
-Channel 4			0
Format : P/D 🔹	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
-Channel 5			
Format : P/D 🔹	Pulse Width : 40	🔽 Output	Stock Insufficiency Interrupt
Pulse : 10	Times : 10	Repeat : 10	Reverse
Advanced Setting			Cancel OK

圖 4-3.3

(6)Set DDA Pulse Command(如圖 4-3.3 所示)

Pulse:每筆命令送出的 pulse 量.

Times:命令筆數.

Repeat:重覆次數.

Back:是否要回轉.

(7)Set Interruption control word.

當使用者選取 DDAX Stock 之 Trigger 時,則該軸將於 FIFO 內之命令量 消耗小於 min stock 之設定值時發出中斷通知 CPU。

當使用者選取 DDA Cycle 之 Trigger 時,則該軸將於每次消耗一筆命令後發出中斷通知 CPU。

4.4 ENC主功能選項

(1)Set ENCoder Counter Input Control Word(如圖 4-4.1 所示)

Inverse A:將A訊號反相。

Inverse B:將B訊號反相。

Inverse C:將C訊號反相。

Swap AB:將A,B訊號交換。

Type:可以選擇輸入訊號為 A/B, CW/CCW, P/D, None。

Multiple:當Type選A/B時,可設定輸入之解碼倍率。

In	put Control Setting					×
	ENC 0	_ ENC 1	_ ENC 2	_ ENC 3	ENC 4	ENC 5
	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A	🗖 Inverse A
	🗖 Inverse B	🗖 Inverse B	🗖 Inverse B	🗖 Inverse B	🗖 Inverse B	🗆 Inverse B
	🗆 Inverse C	🗖 Inverse C	🗖 Inverse C	🗖 Inverse C	🗖 Inverse C	🗆 Inverse C
	🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗖 Swap AB	🗆 Swap AB
	A/B 👻	A/B ▼	A∕B ▼	A/B ▼	A/B ▼	A/B ▼
	A/B	, <u> </u>	, Multiple :	, Multiple :	Multiple :	Multiple :
	P/D	4 🗸	4 🗸	4 🗸	4 -	4 🗸
	None					
	Cancel OK				ОК	

圖 4-4.1

(2)Set Index Latch (如圖 4-4.2 所示)

ENCoder 任一組之 Index 訊號可用來觸發其他組之 ENCoder Counter Latch,其中 Index 0~Index 5:表第0組至第5組ENCoder Counter之 Index 訊號。觸發方式可設定為單次觸發或連續觸發(請參考(3)節設定)。

圖 4-4.2

(3)Set General Index Latch (如圖 4-4.3 所示)

ENCoder Counter Latch 功能除了可由 Index 作觸發外,亦可選擇由 LIO 之輸入點, RIO 之輸入點或 ADC 比較器之中斷觸發。其中 LIO 0~LIO 1: LIO 第 0 點及第 1 點輸入可為觸發源。

RIO 0~RIO 1: RIO 第0組(set), 第0個(slave)之第0點及第1點輸入可 為觸發源。

ADC 0~ADC 1: ADC 第 0 組及第 1 組輸入比較中斷可為觸發源。 Trig. Repeat:如果選取則表示為連續觸發模式,否則為單次觸發。

General Latch Setting					×
ENC 0		ENC 2	_ENC 3	ENC 4	ENC 5
	🗖 LIO 0			🗖 LIO 0	🗖 LIO 0
🗆 LIO 1	🗖 LIO 1	🗖 LIO 1	🗖 LIO 1	🗖 LIO 1	🗖 LIO 1
🗖 RIO 0	🗖 RIO 0	🗖 RIO 0	🗖 RIO 0	🗆 RIO 0	E RIO 0
🗆 RIO 1	🗖 RIO 1	🗖 RIO 1	🗆 RIO 1	🗖 RIO 1	🗖 RIO 1
ADC 0	ADC 0	ADC 0	ADC 0	ADC 0	ADC 0
T ADC 1	🗖 ADC 1	E ADC 1	ADC 1	🗆 ADC 1	T ADC 1
🔽 Trig. Repea	it 🔽 Trig. Repeat	🔽 Trig. Repeat	🔽 Trig. Repeat	🔽 Trig. Repeat	🛛 🔽 Trig. Repeat
		Cancel 0K			

圖 4-4.3

(4)Set ENCoder Counter Compared Value(如圖 4-4.4 所示)

設定 ENCoder Counter 比較值。選取設定選項 Other 的 Setting。配合 Comparator 和 Interrupt Index 設定,當 ENCoder Counter 達到此值時,即 發出中斷通知 CPU。除此之外,此中斷亦可用來觸發自動載入 DAC 輸出 功能,請參考 4.9(2), 4.9(3)節。

(5)Set ENCoder Counter Interruption(如圖 4-4.4 所示)
Comparator:設定比較器中斷功能,當比較值等於 ENCoder 輸入值時可中斷 CPU。除此之外此中斷亦可用來觸發 DAC 預先載入功能。(請參考 4.4(4),4.9(2)及 4.9(3)節)
Interrupt Index:設定 ENC 0~ENC 6 之該組相對應 Index 中斷功能。

(6)Clear ENCoder Counter(如圖 4-4.4 所示)

清除各組 ENCoder Counter 值,當任一組被選定時,則當程式執行時會先 清除該組 ENCoder Counter 值。ENCoder Counter 在開機後初始狀態為不 清除,程式第一次執行時請將 Clear Counter 選取。

(7)Set ENCoder Sample Clock Divider(如圖 4-4.4 所示)

ENCoder 為一數位濾波器,當 Clock Divider 的設定值為 N 時, ENCoder 的 Sample Rate 可以從式子(4)求得

$$Period of Sample Rate = (N+1) / System Clock$$
(4)

當輸入訊號連續三次取樣都為 High 時,系統才認為此訊號為 High。故合法的脈波寬度可以從式子(5)求得

$$Valid Pulse Width = 3 \times Period of Sample Rate$$
(5)

假設 System Clock 為 40MHz, Clock Divider 設為 10 時,表示輸入訊號寬 度至少需大於 1.68μs。否則將被數位濾波器濾掉。

Valid Pulse width = $3 \times (10+1) / 40MHz = 1.68\mu s$

(8)Set ENCoder Start/Stop(如圖 4.4-4 所示)

啟動 ENCoder 計數功能。如果有任何一組 ENCoder 被啟動則必須選取 Enable input。

4.5 PCL主功能選項

(1)Set Close Loop Gain(如圖 4.5-1 所示)

閉迴路增益值的設定共有兩個參數,一為比例增益,一為倍率增益。 M gain 為比例增益。注意:此值應設為正,當此值設為負值的時候可能 導致正迴授。

Sgain 為倍率增益,正值表乘以一個2的倍數,負值表除以一個2的倍數。

(1)Set Close Loop Gai	n
PCL Setting	
PCL 0	
M Gain : 100	S Gain : -1
Clear Error	Enable Overflow Trigger
_ PCL 1	
M Gain : 100	S Gain : -1
Clear Error	Enable Overflow Trigger I Enable Error Counter
_ PCL 2	
M Gain : 100	S Gain : -1
Clear Error	✓ Enable Overflow Interrupt ✓ Enable Error Counter
_ PCL 3	
M Gain : 100	S Gain : -1
Clear Error	Enable Overflow Trigger
FPCL 4	
M Gain : 100	S Gain : -1
Clear Error	Enable Overflow Trigger
_ PCL 5	
M Gain : 100	S Gain : -1 5
3 ▼ Clear Error	Enable Overflow Trigger 🔽 Enable Error Counter
<mark>4</mark>	Cancel OK
	圖 4-5.1 (2)Set Emer Counter
	(2)Set Error Counter
	Overflow Interrupt

- (2) Set Overflow Interrupt(如圖 4-5.1 所示) 當使用者選取 Enable Interrupt 時,則當 Error Counter 發生溢位時,將發出中斷通知 CPU。
- (3) Set Error Counter Clear(如圖 4-5.1 所示) 設定清除各軸之 Error Counter 值,並解除 Error Counter 溢位狀態,本設定於程 式執行時會先清除 Error Counter 值。
- (4) Set Close Loop Enable(如圖 4-5.1 所示)

啟動各軸PCL控制功能。當欲開啟PCL控制功能時,必須把該軸之Enable PCL X 選取,而當任一軸之Enable被選取時,Enable PCL必須同時被選取,PCL控制功 能才為有效。當Enable PCL不被選取時,無論該軸Enable PCL X是否被選取,PCL 控制功能皆被關閉。 使用 PCL 硬體閉迴路功能時,需同時設定 DDA 功能選項,ENC 功能選項及 DAC 功能選項。詳細參數設定請參考 4.3、4.4 及 4.6 各節設定輿說明。

(5) Set Enable Error Counter(如圖 4-5.1 所示) 當使用者選取 Enable Error Counter 時,則當 Error Counter 發生溢位時,將發出 中斷通知 CPU。

4.6 LIO功能選項

(1)Set Local Digital Output(如圖 4-6.1 所示)

設定近端輸出入點的輸出狀態,近端輸出入點可以每4點為一組,用軟體 規劃為輸出或輸入,開機後狀態為所有輸出入點均規劃為輸入模式。LD27 ~LD0分別為輸出第27點至輸出第0點。

(2)Set Local Digital Output Enable(如圖 4-6.1 所示)

規劃近端輸出入點的輸出功能為開啟或關閉,設定為開啟時請搭配硬體模 組實際接線,並選取 Output。當設定為輸出功能時,則輸出狀態可由軟體 讀回。

COutput Value-						
	🗆 LDO 4	🗆 LDO 8	□ LD0 12	🗆 LDO 16	🗆 LDO 20	🗆 LDO 24
🗆 LD0 1	🗆 LDO 5	🗆 LDO 9	🗆 LDO 13	🗆 LDO 17	🗆 LDO 21	🗆 LDO 25
🗆 LDO 2	🗆 LDO 6	🗖 LDO 10	🗆 LDO 14	🗆 LDO 18	🗆 LDO 22	🗆 LDO 26
🗆 LDO 3	🗆 LD0 7	🗖 LD0 11	🗆 LDO 15	🗆 LDO 19	🗖 LDO 23	🗆 LDO 27
Output	C Output	C Output	C Output		✓ Output	C Output

圖 4-6.1

Local Digital Output Enable

(3)Set Watch Dog Control(如圖 4-6.2 所示)

當設定 Watch Dog Timer Value 為 W 時,則 Watch Dog Timer 時間可由下 式(6)求得

Period of Watch Dog Timer =
$$W \times$$
 Period of Interval Timer (6)

一但開啟 Watch Dog Timer 功能後,使用者必須在 Watch Dog Time Out 之前,清除 Watch Dog Timer 計數器之值。否則,一但 Watch Dog Time Out 發生, Reset 訊號將輸出,並清除所有硬體裝置至初始化狀態。而此 Reset 時間的長短是可事先做規劃, Reset 時間長短可由式子(7)求得

$$Reset Duration = Timer / System Clock$$
(7)

本測試程式可模擬 Watch Dog Time Out 功能,使用方式為當設定 Refresh Times 值為 R 時,則測試程式將固定以 Period of Interval Timer 時間清除 Watch Dog Timer R 次,當 Refresh Times 設定為 0 時,程式將持續 Refresh Watch Dog Timer 計數器。

當使用 Watch Dog Timer 功能時,請選取其 Enable。

Watch Dog			
Timer : 0	ms Reset: 0	Refresh Times : 0	🗆 Enable

圖 4-6.2

Research Institute

(4)Set Interrupt Control(如圖 4-6.3 所示)

近端輸入點具有可規劃中斷功能,其中LDI 0~LDI 7 為規劃成輸入點時的 第0點至第7點,DFI 0~DFI 6 為雙功能輸入的第0點至第6 點。中斷觸 發可設定為上升緣觸發(Rise),或下降緣觸發(Fall)或是輸入轉態觸發(Both) 三種。

_Interrupt—							
LDI 0 :	LDI1:	LDI 2 :	LDI 3 :	LDI 4 :	LDI 5 :	LDI 6 :	LDI 7 :
None 👻	None 👻	None 🔻	None 🔻	None 💌	None 💌	None 👻	None 🔻
DFI 0 :	None	DFI 2 :	DFI 3 :	DFI 4 :	DFI 5 :	DFI 6 :	
None 👻	Fall	None 👻	None 🔻	None 🗸	None 🗸	None 👻	
	Both						

圖 4-6.3

(5)Set Timer value(如圖 4-6.4 所示)

設定 Timer 計時器時間,計時器時間可由以下式(8)求得

Period of Interval Timer = Timer / System Clock (8)

當設定 Timer 計時功能時,必須搭配設定中斷功能開啟,則硬體將於一個 固定時間觸發中斷一次,以做為時間參考基準(請參考 Interrupt 設定及 Start/Stop 設定)。除此之外,無論是否開啟中斷功能,Timer 所設定的時 間基準皆被用來觸發看門狗計時器(請參考 Watch Dog 設定及設定) 設定 Interval Timer 中斷功能時,請選取 Enable Timer。

Γ	Timer Timer : 0	ms	Enable Timer

圖 4-6.4

4.7 RIO0主功能選項

(1)Set Remote I/O Output Value(如圖 4-7.1 所示)

EPCIO ASIC 上可並接 2 組(set)遠端 I/O,每組可串接 3 個(slave)遠端串列 I/O 模組(編號 EDIO-S001),每個遠端串列 I/O 模組有 64 個輸入點及 64 點輸出點,所以最大可擴充至讀取 384 點輸入點及輸出 384 點輸出點。 將要輸出的點選取,便可在 EDIO-S001 顯示出來。

_ Por	rt 0 -	343.	202		225	0.0		-0.700						2.2	
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
	4.1														
	E	п	c	P		0	Q	7	6	F		2	2	1	0
Ιċ	È.	Ē	ň	Ë.	ñ.	э П	Ū.	'n.	ů.	э П			É.	÷.	ů l
	-	-	-			Ц				-				-	-
- Por	t 2-														
	tt 2- E	D	с	в	A	9	8	7	6	5	4	3	2	1	0
	t 2- E	D	C D	В	A	9	8	7	6	5	4	3	2	1	0
F F	E E	D	c □	в	Â	9	8	7	6 □	5	4	3 □	2	1	0
	rt 2- E D	D	c D	B	A	9	8	7	6	5	4	3	2	1	0
	rt 2- E D rt 3- E	D	c D c	B D B	A 	9 □ 9	8	7	6 □	5	4	3 □ 3	2	1	0
Poi F Poi F	t 2- E D t 3- E		C C C	B		9 □ 9 9	8	7	6 □ 6	5	4	3 □ 3	2	1	0

圖 4-7.1

(2)Set Remote I/O Clock Divider(如圖 4-7.2 所示)

設定遠端串列 I/O 模組的傳輸時脈,其中 RIO 0 Clock Divider 為第 0 組 的傳輸時脈除頻值,當除頻值設定為 N 時,傳輸時脈可根據以下公式求 得。

Transmission clock:
$$SCLK = System Clock / 2(N+1)$$
 $(0 \le N \le 255)$ (8)

當任一組僅連接 M 個遠端串列 I/O 模組時,資料更新所需時間約為

Data update time :
$$100 \times M \times SCLK$$
 $(1 \le M \le 3)$ (9)

圖 4-7.2

(3)Set Remote I/O Interrupt Control(如圖 4-7.2 所示)

任一個遠端串列 I/O 模組具有 4 點可規劃中斷功能的輸入點,中斷觸發方 式可為上升緣觸發(Rising),下降緣觸發(Falling)或是輸入轉態觸發(Both) 三種。其中 INT 0~INT 3 分別為第 0 點輸入至第 3 點輸入

- (4)Set Remote I/O Maximum Transmission Error(如圖 4-7.3 所示) 設定 Remote I/O 資料傳輸錯誤時最大允許資料重傳次數,當設定為 0 時, 系統將於錯誤發生後自動重送最多16次。
- (5)Set Remote I/O Transmission Error Interrupt(如圖 4-7.3 所示)

Т

Remote I/O 在做資料傳輸時,若傳輸資料發生錯誤時,可設定中斷觸發 功能,同時硬體將自動停止資料傳輸。而中斷觸發功能可根據不同的需求 設定不同的錯誤次數,請參考 4.7(4)節 Maximum Transmission Error Setting •

RIO 0 Setting	<u>></u>
Port 0 F E D C B A 9 8 7 6 5 4 3 2 1 0	Clock Divider : 20
Port 1 F E D C B A 9 8 7 6 5 4 3 2 1 0 D D D D D D D D D D D D D D D D D D D	INDUT Trigger INT 0: INT 1: INT 2: INT 3: None None None
Port 2 F E D C B A 9 8 7 6 5 4 3 2 1 0	Error Trigger Max. Trans. Error : 15
Port 3 F E D C B A 9 8 7 6 5 4 3 2 1 0	Enable RIO 0
	Cancel OK

圖 4-7.3

(6)Set Remote I/O Enable Status(如圖 4-7.3 所示)

開啟或關閉 Remote I/O 0 傳輸功能,當欲開啟第 0 組遠端串列 I/O 模組時, 請選取 Enable RIO 0。注意,當系統僅配接一個遠端串列 I/O 模組時,請 開啟該組相對應開闢,錯誤的設定將導致資料傳輸/接受錯誤而停止運作。 本測試程式可模擬跑馬燈輸出,模擬時請開啟 FreeRun 設定,跑馬燈資料 更新時間將根據 Timer 計時器的時間規劃,請參考 4.5(4)及 4.5(5)節。

工業技術研究院 Industrial Technology Research Institute EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

4.8 RIO1主功能選項

(1)Set Remote I/O Output Value(如圖 4-8.1 所示)

EPCIO ASIC 上可並接 2 組(set)遠端 I/O,每組可串接 3 個(slave)遠端串列 I/O 模組(編號 EDIO-S001),每個遠端串列 I/O 模組有 64 個輸入點及 64 點輸出點,所以最大可擴充至讀取 384 點輸入點及輸出 384 點輸出點。 將要輸出的點選取,便可在 EDIO-S001 顯示出來。

圖 4-8.1

(2)Set Remote I/O Clock Divider(如圖 4-8.2 所示)

設定遠端串列 I/O 模組的傳輸時脈,其中 RIO 1 Clock Divider 為第 1 組 的傳輸時脈除頻值,當除頻值設定為 N 時,傳輸時脈可根據以下公式(10) 求得

Transmission clock : SCLK = System Clock / 2(N+1) ($0 \le N \le 255$) (10)

當任一組僅連接 M 個遠端串列 I/O 模組時,資料更新所需時間約為公式 (11) 所示

Data update time $: 100 \times M \times SCLK \ (l \leq M \leq 3)$ (11)

圖 4-8.2

(3)Set Remote I/O Trigger Control(如圖 4-8.2 所示)

任一個遠端串列 I/O 模組具有 4 點可規劃中斷功能的輸入點,中斷觸發方 式可為上升緣觸發(Rising),下降緣觸發(Falling)或是輸入轉態觸發(Both) 三種。其中 INT 0~INT 3 分別為第 0 點輸入至第 3 點輸入。

- (4)Set Remote I/O Maximum Transmission Error(如圖 4-8.3 所示) 設定 Remote I/O 資料傳輸錯誤時最大允許資料重傳次數,當設定為 0 時, 系統將於錯誤發生後自動重送最多 16 次。
- (5)Set Remote I/O Transmission Error Interrupt(如圖 4-8.3 所示)

Remote I/O 在做資料傳輸時,若傳輸資料發生錯誤時,可設定中斷觸發功能,同時硬體將自動停止資料傳輸。而中斷觸發功能可根據不同的需求設定不同的錯誤次數,請參考 4.8(4)節 Maximum Transmission Error Setting。

圖 4-8.3

(6)Set Remote I/O Enable Status(如圖 4-8.3 所示)

開啟或關閉 Remote I/O1傳輸功能,當欲開啟第1組遠端串列 I/O 模組時, 請選取 Enable RIO1。注意,當系統僅配接一個遠端串列 I/O 模組時,請 開啟該組相對應開關,錯誤的設定將導致資料傳輸/接受錯誤而停止運作。 本測試程式可模擬跑馬燈輸出,模擬時請開啟 FreeRun 設定,跑馬燈資料 更新時間將根據 Timer 計時器的時間規劃,請參考 4.9(3)及 4.9(5)節。

4.9 DAC主功能選項

(1)Set DAC Output Value.

DAC 的輸出值可以為鋸齒波(如圖 4-9.1 所示)的方式輸出,設定方式如 下圖 4-9.2 所示。使用者可輸出一固定電壓值,設定時利用滑鼠調整各軸 的輸出電壓值。

Voltage

💣 EPCIO Test Program for Mult	i Cards : Noname.set			
		<u>└</u> → 🏠	Run 🗡	Quit
EPCIO-6000/6005 Card 💌	DDA ENC PCL	LIO RIO OL	ıt. RIO In. RIO INT. A	DAC DAC
Card Index : 0 🔹		t	DAC 0 : 0.V	
Setting	,	i	DAC 1 : 0.V	
System Parameter	,		DAC 2 : 0.V	
	,		DAC 3:0.V	
	,	t	DAC 4:0.V	
ENC	,		DAC 5 : 0.V	
PCL				
LI0				
RIO 0				
RI0 1				
DAC				
ADC				
Library Version : 4.01			40 MHz	

圖 4-9.2

(2)Set DAC PreLoad Value(如圖 4-9.3 所示)

預設 DAC 自動輸出電壓值功能,當 ENC、LIO、RIO、DAC、ADC 中任 - Trigger 條件成立,並已開啟 DAC 自動輸出預設值功能時(參考(3)、 (4)、(5)、(6)及(7)節),硬體將自動輸出預設電壓值。

load Setting					
DAC 0 Preload : 0	DAC 1 Preload :	DAC 2 Preload :	DAC 3 Preload :	DAC 4 Preload :	DAC 5 Preload : 0
			Cancel		0K

圖 4-9.3

(3)Set ENCoder Trigger DAC Source (如圖 4-9.4 所示)

選擇 ENCoder 任一組之比較器中斷輸出為 DAC 的自動輸出電壓值之觸發源。

ENC 0~ENC 6: ENCoder 第 0 組至第6 組之比較器中斷功能輸入,使用 此功能時請將設定 4.4(5)之 Comparator 中斷功能選取。

ENC Trigger Settin	g				×
	DAC 1	DAC 2	CDAC 3		DAC 5
ENC 0	ENC 0	ENC 0	ENC 0	ENC 0	ENC 0
ENC 1	ENC 1	ENC 1	ENC 1	ENC 1	ENC 1
🗆 ENC 2	ENC 2	ENC 2	ENC 2	ENC 2	ENC 2
ENC 3	ENC 3	ENC 3	ENC 3	ENC 3	ENC 3
ENC 4	ENC 4	ENC 4	ENC 4	ENC 4	ENC 4
ENC 5	ENC 5	ENC 5	ENC 5	ENC 5	ENC 5
			Cancel		ок

圖 4-9.4

(4)Set ADC Trigger DAC Source (如圖 4-9.5 所示)

EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

選擇 ADC 0~ADC 7 任一組之比較器中斷輸出為 DAC 的自動輸出電壓值 之觸發源。

ADC 0~ADC 7: ADC 第 0 組至第 7 組之比較器中斷功能輸入,使用此功能時請設定 4.10(2)之 Interrupt Control 中斷功能為開啟。

圖 4-9.5

(5)Set LIO Trigger DAC Source (如圖 4-9.6 所示)

選擇 LDI 前 4 點及 DFI 前 4 點之任一點之中斷功能為 DAC 的自動輸出電 壓值之觸發源。

LI0~LI3:LDI第0點至第3點之中斷功能輸入,使用此功能時請設定 4.6(4)之 Trigger 中斷功能為 Yes。

DI 0~DI 3: DFI 第 0 點至第 3 點之中斷功能輸入,使用此功能時請設定 4.6(4)之 Trigger 中斷功能為 Yes。

圖 4-9.6

Research Institute

(6)Set RIO Trigger DAC Source (如圖 4-9.7 所示)

選擇 RIO 第0組(set)之第0個(slave)前4點及 RIO 第1組(set)之第0個(slave) 前4點之任一點中斷功能為 DAC 的自動輸出電壓值之觸發源。

R 00~R 03: RIO 第 0 組(set)之第0個(slave)輸入點中斷功能輸入,使用 此功能時請設定 4.7(3)之 Interrupt 中斷功能為 Yes。

R 10~R 13: RIO 第 1 組(set)之第0個(slave)輸入點中斷功能輸入,使用 此功能時請設定 4.8(3)之 Interrupt 中斷功能為 Yes。

圖 4-9.7

(7)Set DAC Source Selection(如圖 4-9.8 所示)

Trigger: 當欲使用(2)、(3)、(4)、(5)及(6)節所述之自動輸出 DAC 電壓值 時,應選取 Trigger。

Source:當選擇 Source為 DAC 時,輸出命令由軟體直接規劃。當選擇 Source 為 PCL 時,輸出命令由硬體閉迴路(PCL)自動產生。(請參考 4.5 各節說明) 注意,DAC 自動輸出功能僅當 Source 選擇 DAC 時有效。

Source Setting					×
DAC 0 Source : DAC • DAC	DAC 1 Source : DAC • Trigger	DAC 2 Source : DAC • Trigger	DAC 3 Source : DAC • Trigger	DAC 4 Source : DAC • Trigger	DAC 5 Source : DAC •
			Cance	el	0К

圖 4-9.8

(8)Set DAC Clock Divider(如圖 4-9.9 所示)

設定 DAC 傳輸時脈除頻值,當 Clock Divider 為 N 時, DAC 傳輸時脈可 由以下公式(12)求得

$$Period of DAC \ Clock = 4(N+1) \ / \ System \ Clock$$
(12)

而此時 DAC 的資料更新時間如公式(13)所示

$$DAC Data Update Time = 20 \times Period of DAC Clock$$
(13)

.C Setting Preload E	NC Trig.	ADC Trig.	LIO Trig.	RIO Trig.	Source	
	DACO	DAC1	DAC2	DAC3	DAC4	DAC5
Preload	0.	0.	0.	0.	0.	0.
Clock Di	vider : 10)		₽ E	nable DAC	
Set	tting		(Cancel		ОК

圖 4-9.9

(9)Set DAC Enable(如圖 4-9.9 所示)

啟動 DAC 輸出功能則選取 Enable DAC。

, EPCIO Series 驅動函式庫整合測試環境使用手冊 for WINDOWS

4.10 ADC主功能選項

Research Institute

(1)Set ADC Preload Value

工業技術研究院

可預先 preload 一個比較值以供 ADC 比較器之用,並可設定當比較條件 成立時發出中斷通知 CPU, 每 CH 都有一個比較器,每個比較器都可設 定產生中斷,詳細說明如下:

- ADC 比較器運作說明:
 - A、比較器先遮蔽(MASK)ADC 電壓讀取值之最後1個,2個或3個 BITS 後形成遮蔽值(即將 ADC 電壓讀取值最後1個,2個或3個 視為0之後形成遮蔽值),再將遮蔽值與預設值(preload value)進行 比較,其比較後之結果是以中斷方式通知 CPU,而比較方式參考 下面之說明。
 - 註1:當 ADC 電壓讀取值更新之後,遮蔽值亦隨之更新。
 - 註 2:遮蔽之 bit 數亦可設為 0,其意義為無遮蔽狀態,即遮蔽值等於 ADC 原始電壓讀取值。
 - B、比較方式:可選擇下列三種比較方式來觸發中斷
 - (1) 當遮蔽值從小於預設值變成大於或等於預設值之瞬間。
 - (2) 當遮蔽值從大於預設值變成小於或等於預設值之瞬間。
 - (3) 上列兩種情況皆可觸發中斷。
- ADC 比較器軟體操作
 - A、預設比較值
 - →進入 ADC 主功能選項—Preload 選項設定預設比較值,設定方式 説明如下:(參考圖 4.37)
 - (1)當 ADC 輸入電壓模式為 Unipolar mode 時,則比較值設定範圍為 0V~20V。
 - (2)當 ADC 輸入電壓模式 Bipolar mode 時,則比較值設定範圍為 -10V~10V。

- B、設定觸發比較中斷
 - →進入 ADC 主功能選項—Trigger Control,設定各 CH 是否要觸發比較中斷及比較方式,而比較中斷設定視窗之參數說明如下:(參考圖 4-10.1)
 - (1) None:即未設定比較中斷。
 - (2) L2GE(lower to greater or equal):當遮蔽值從小於預設值變成大於 或等於預設值。
 - (3) GE2L(greater to equal or lower):當遮蔽值從大於預設值變成小於 或等於預設值。
 - (4) L2GE&GE2L:上列兩種情況皆可觸發中斷。
- C、設定 MASK 值
 - →進入 ADC 主功能選項—Mode Select 之 Compare Mask 項設定遮 蔽值(參考圖 4-10.1)。
- D、啟動 ADC

→進入 ADC 主功能選項—ADC X 中的 Enable (即該 CH 設定 enable),另外亦必須選取 ADC Enable (參考圖 4-10.1)。

E、執行

→按 Run 即可。

ADC Setting			
ADC 0			Mode Setting
Preload : 0	Trig. Control : None 🚽 Bipolor	✓ I Enable	Mode :
ADC 1			Free 🗸
Preload : 0	Trig. Control : None 🗾 Bipolor		Compare Mask :
ADC 2			No Mask 🗾
Preload : 0	Trig. Control : None 🗾 Bipolor		Select Single :
ADC 3			0 🗸
Preload : 0	Trig. Control : None 💌 Bipolor	▪ 🔽 Enable	Select Tag :
ADC 4			
Preload : 0	Trig. Control : None 🗾 Bipolor	🔹 🗹 Enable	
_ADC 5			□ One Finish
Preload : 0	Trig. Control : None 🗾 Bipolor	🔹 🔽 Enable	🗖 Tag Finish
ADC 6			
Preload : 0	Trig. Control : None 🗾 Bipolor	▼ I Enable	Clock Divider :
ADC 7			50
Preload : 0	Trig. Control : None 🗾 Bipolor	🔹 🔽 Enable	Enable ADC
		Cancel	ОК

圖 4-10.1

(2)Set ADC Interrupt(如圖 4-10.1 所示)

工業技術研究院

ADC 除了比較值觸發中斷外,另外可設定之中斷發生源如下:

- ■轉換完成中斷:1個 當有一個 ADC 輸入點完成轉換時,可設定向系統產生中斷
 →進入 ADC 主功能選項-選取 Triggert 之 One Finish 即可。
- 標籤輸入轉換完成中斷:1個 可設定某一個輸入 CH 為'標籤'(Tag)輸入,當該輸入每完成轉換時, 可設定向系統產生中斷。
 - →進入 ADC 主功能選項—Select Tag 項,選定 0~7 一個 CH 為作 Tag CH(參考圖 4.37)。
 - →進入 ADC 主功能選項-選取 Trigger 之 Tag Finish 即可。

(3)Set Mode Selection

參考本節附圖,其中 Select Single 參考本節, Select Tag 參考 4.10(2)節, Free/Single 參考本節, Compare Mask 參考 4.10(1)節, Select Single 及 Free/Single 使用時機說明如下:

ADC 電壓輸入讀取可分為以下兩種:

- SINGLE RUN 模式:
- A:八組 A/D 轉換只會 ENABLE 其中一組(需指定),其他關閉,且完成 轉換一次之後便不再進行轉換。
- B: 資料轉換時間(含資料傳輸時間)=(1 /Serial_Clock) X 20
- 註: Serial Clock 請參考 4.10(5)
- C: SINGLE RUN 模式軟體設定
- (1)選定 Single

→進入 ADC 主功能選項—Mode Select 之 Free/Single 項選定 Single。
 (2)選定一組 CH

- →進入 ADC 主功能選項—Mode Select 之 Select Single 項,選定一個 0~7 CH。
- (3) 啟動 ADC
 - →進入 ADC 主功能選項一將前項已選定之 CH Enable 為選取 ADC X 的 Enable,另外亦必須選取 Enable ADC (參考圖 4.38)。
- (4)必要時可調整 Data Update Time
 - →進入ADC主功能選項—Clock Divider 設定 Serial Clock 以調整 Data Update Time(參考圖 4.38)。
- (5)執行
 - →按 Run 即可

Industrial Technology Research Institute

■ FREE RUN 模式:

A:八組 A/D 轉換中可 ENABLE 其中數組(需指定),其他關閉,而且轉 換只會在已經啟動組數中輪替。

B: Data Update Time (含資料傳輸時間)

= (1 / Serial Clock) × 20 × (ENABLE 之組數)

C:FREE RUN 模式軟體設定

(1)選定 Free

→進入 ADC 主功能選項—Mode Select 之 Free/Single 項選定 Free 。
(2)啟動 ADC

→進入 ADC 主功能選項-將前項已選定之 CH Enable 為選取 ADC X 的 Enable,另外亦必須選取 Enable ADC (參考圖 4-10.2)。

(3)必要時可調整 Data Update Time

→進入 ADC 主功能選項—Clock Divider 設定適當值以調整 Data Update Time(參考圖 4-10.2)。

(4)執行

→按 Run 即可。

ADC Setting				
ADC 0			3	Mode Setting
Preload : 0	Trig. Control : None	Bipolor	🔹 🔽 Enable	Mode :
		Bipolor		Free -
Preload : 0	Trig. Control : None	- Unipolor Bipolor	▼ Enable	Compare Mask :
ADC 2				No Mask 🗾
Preload : 0	Trig. Control : None	Bipolor	▼ 🔽 Enable	Select Single :
- 4DC 3-				0 🔹
Preload : 0	Trig. Control : None	Bipolor	▼ 🔽 Enable	Select Tag :
ADC 4				
Preload : 0	Trig. Control : None	Bipolor	▼ 🔽 Enable	
_ ADC 5				C One Finish
Preload : 0	Trig. Control : None	Bipolor	🔹 🔽 Enable	Tag Finish
ADC 6				J
Preload : 0	Trig. Control : None	- Bipolor	▼ 🔽 Enable	Clock Divider :
ADC 7				50
Preload : 0	Trig. Control : None	Bipolor	▼ 🔽 Enable	☑ Enable ADC
			Cancel	ОК

圖 4-10.2

(4)Set Bipolar/Unipolar mode (如圖 4-10.2 所示)

ADC 電壓輸入範圍有兩種:

業技術研究院

Bipolar mode : -10V~10V

Unipolar mode : $0V \sim 20V$

說明:請根據輸入電壓範圍選定一個 MODE 分別指定給硬體電路板及軟體,硬體部份設定請參考 EPCIO-601, EPCIO-602, EPCIO-400 使用手冊,軟體部份如下:

→進入 ADC 主功能選項—Bi/Unipolar 選擇一個 MODE

(註:當使用 ADC 之任一功能,本項都要設定,且八個 CH 都要選同一 種模式)

(5)Set ADC Clock Divider(如圖 4.38 所示)

即設定 ADC 串列通訊速率(Serial Clock),當使用 ADC 之任一功能,本項 都要設定,設定時請進入 ADC 主功能選項—Clock Divider 設定一個數值 N,而N與 Serial Clock 關係如下:

Serial Clock = system clock / 4(N+1) , $N=0\sim255$ (default N=0) (14)

另外設定 Serial Clock 可以改變 ADC Single Run 資料轉換時間及 Free Run 模式之 Data Update Time(參考 4.10(3)節)。

(6)Set Start/Stop ADC(如圖 4-10.2 所示)

- Enable ADC 為 ADC 總關開,當未選取 Enable ADC 時,全部 ADC 之功 能將關閉而無法使用。
- 2、若要啟動某些 CH 之 ADC 轉換功能時,除了要將 ADC X 中的 Enable 選取外,也需將 Enable ADC 選取。
- 3、當使用 ADC 之任一功能,本項都要設定。